Combining Philosophers

All the ideas for George Boolos, A.George / D.J.Velleman and Adam Cross

expand these ideas     |    start again     |     specify just one area for these philosophers


73 ideas

2. Reason / D. Definition / 7. Contextual Definition
Contextual definitions replace a complete sentence containing the expression [George/Velleman]
2. Reason / D. Definition / 8. Impredicative Definition
Impredicative definitions quantify over the thing being defined [George/Velleman]
4. Formal Logic / F. Set Theory ST / 1. Set Theory
The logic of ZF is classical first-order predicate logic with identity [Boolos]
4. Formal Logic / F. Set Theory ST / 2. Mechanics of Set Theory / b. Terminology of ST
The 'power set' of A is all the subsets of A [George/Velleman]
Cartesian Product A x B: the set of all ordered pairs in which a∈A and b∈B [George/Velleman]
The 'ordered pair' <a, b>, for two sets a and b, is the set {{a, b},{a}} [George/Velleman]
4. Formal Logic / F. Set Theory ST / 3. Types of Set / e. Equivalence classes
Grouping by property is common in mathematics, usually using equivalence [George/Velleman]
'Equivalence' is a reflexive, symmetric and transitive relation; 'same first letter' partitions English words [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / a. Axioms for sets
Even the elements of sets in ZFC are sets, resting on the pure empty set [George/Velleman]
A few axioms of set theory 'force themselves on us', but most of them don't [Boolos]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / b. Axiom of Extensionality I
Axiom of Extensionality: for all sets x and y, if x and y have the same elements then x = y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / c. Axiom of Pairing II
Axiom of Pairing: for all sets x and y, there is a set z containing just x and y [George/Velleman]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / h. Axiom of Replacement VII
Do the Replacement Axioms exceed the iterative conception of sets? [Boolos, by Maddy]
4. Formal Logic / F. Set Theory ST / 4. Axioms for Sets / p. Axiom of Reducibility
The Axiom of Reducibility made impredicative definitions possible [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / a. Sets as existing
The use of plurals doesn't commit us to sets; there do not exist individuals and collections [Boolos]
ZFC can prove that there is no set corresponding to the concept 'set' [George/Velleman]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / d. Naïve logical sets
Naïve sets are inconsistent: there is no set for things that do not belong to themselves [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / e. Iterative sets
The iterative conception says sets are formed at stages; some are 'earlier', and must be formed first [Boolos]
4. Formal Logic / F. Set Theory ST / 5. Conceptions of Set / f. Limitation of Size
Limitation of Size is weak (Fs only collect is something the same size does) or strong (fewer Fs than objects) [Boolos, by Potter]
4. Formal Logic / F. Set Theory ST / 8. Critique of Set Theory
Does a bowl of Cheerios contain all its sets and subsets? [Boolos]
As a reduction of arithmetic, set theory is not fully general, and so not logical [George/Velleman]
5. Theory of Logic / A. Overview of Logic / 7. Second-Order Logic
Boolos reinterprets second-order logic as plural logic [Boolos, by Oliver/Smiley]
Second-order logic metatheory is set-theoretic, and second-order validity has set-theoretic problems [Boolos]
Monadic second-order logic might be understood in terms of plural quantifiers [Boolos, by Shapiro]
Boolos showed how plural quantifiers can interpret monadic second-order logic [Boolos, by Linnebo]
Any sentence of monadic second-order logic can be translated into plural first-order logic [Boolos, by Linnebo]
5. Theory of Logic / C. Ontology of Logic / 1. Ontology of Logic
A sentence can't be a truth of logic if it asserts the existence of certain sets [Boolos]
5. Theory of Logic / D. Assumptions for Logic / 2. Excluded Middle
Asserting Excluded Middle is a hallmark of realism about the natural world [George/Velleman]
5. Theory of Logic / D. Assumptions for Logic / 4. Identity in Logic
Identity is clearly a logical concept, and greatly enhances predicate calculus [Boolos]
5. Theory of Logic / G. Quantification / 2. Domain of Quantification
'∀x x=x' only means 'everything is identical to itself' if the range of 'everything' is fixed [Boolos]
5. Theory of Logic / G. Quantification / 5. Second-Order Quantification
Second-order quantifiers are just like plural quantifiers in ordinary language, with no extra ontology [Boolos, by Shapiro]
5. Theory of Logic / G. Quantification / 6. Plural Quantification
We should understand second-order existential quantifiers as plural quantifiers [Boolos, by Shapiro]
Plural forms have no more ontological commitment than to first-order objects [Boolos]
5. Theory of Logic / G. Quantification / 7. Unorthodox Quantification
Boolos invented plural quantification [Boolos, by Benardete,JA]
5. Theory of Logic / J. Model Theory in Logic / 1. Logical Models
A 'model' is a meaning-assignment which makes all the axioms true [George/Velleman]
5. Theory of Logic / J. Model Theory in Logic / 2. Isomorphisms
Differences between isomorphic structures seem unimportant [George/Velleman]
5. Theory of Logic / K. Features of Logics / 2. Consistency
Consistency is a purely syntactic property, unlike the semantic property of soundness [George/Velleman]
A 'consistent' theory cannot contain both a sentence and its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 3. Soundness
Soundness is a semantic property, unlike the purely syntactic property of consistency [George/Velleman]
5. Theory of Logic / K. Features of Logics / 4. Completeness
Weak completeness: if it is valid, it is provable. Strong: it is provable from a set of sentences [Boolos]
A 'complete' theory contains either any sentence or its negation [George/Velleman]
5. Theory of Logic / K. Features of Logics / 6. Compactness
Why should compactness be definitive of logic? [Boolos, by Hacking]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / b. Types of number
Rational numbers give answers to division problems with integers [George/Velleman]
The integers are answers to subtraction problems involving natural numbers [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 3. Nature of Numbers / g. Real numbers
Real numbers provide answers to square root problems [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 4. Using Numbers / g. Applying mathematics
Logicists say mathematics is applicable because it is totally general [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / a. The Infinite
Infinite natural numbers is as obvious as infinite sentences in English [Boolos]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / d. Actual infinite
The classical mathematician believes the real numbers form an actual set [George/Velleman]
6. Mathematics / A. Nature of Mathematics / 5. The Infinite / f. Uncountable infinities
Mathematics and science do not require very high orders of infinity [Boolos]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / e. Peano arithmetic 2nd-order
Many concepts can only be expressed by second-order logic [Boolos]
Second-order induction is stronger as it covers all concepts, not just first-order definable ones [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 4. Axioms for Number / g. Incompleteness of Arithmetic
The Incompleteness proofs use arithmetic to talk about formal arithmetic [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / c. Fregean numbers
A successor is the union of a set with its singleton [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 5. Definitions of Number / d. Hume's Principle
Frege's Theorem shows the Peano Postulates can be derived from Hume's Principle [George/Velleman]
6. Mathematics / B. Foundations for Mathematics / 6. Mathematics as Set Theory / a. Mathematics is set theory
Set theory can prove the Peano Postulates [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / a. For mathematical platonism
Mathematics isn't surprising, given that we experience many objects as abstract [Boolos]
6. Mathematics / C. Sources of Mathematics / 1. Mathematical Platonism / b. Against mathematical platonism
Talk of 'abstract entities' is more a label for the problem than a solution to it [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 4. Mathematical Empiricism / c. Against mathematical empiricism
If mathematics is not about particulars, observing particulars must be irrelevant [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 6. Logicism / b. Type theory
In the unramified theory of types, the types are objects, then sets of objects, sets of sets etc. [George/Velleman]
The theory of types seems to rule out harmless sets as well as paradoxical ones. [George/Velleman]
Type theory has only finitely many items at each level, which is a problem for mathematics [George/Velleman]
Type theory prohibits (oddly) a set containing an individual and a set of individuals [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 8. Finitism
Bounded quantification is originally finitary, as conjunctions and disjunctions [George/Velleman]
Much infinite mathematics can still be justified finitely [George/Velleman]
6. Mathematics / C. Sources of Mathematics / 10. Constructivism / b. Intuitionism
The intuitionists are the idealists of mathematics [George/Velleman]
Gödel's First Theorem suggests there are truths which are independent of proof [George/Velleman]
7. Existence / D. Theories of Reality / 11. Ontological Commitment / b. Commitment of quantifiers
First- and second-order quantifiers are two ways of referring to the same things [Boolos]
8. Modes of Existence / D. Universals / 1. Universals
It is lunacy to think we only see ink-marks, and not word-types [Boolos]
9. Objects / A. Existence of Objects / 2. Abstract Objects / a. Nature of abstracta
I am a fan of abstract objects, and confident of their existence [Boolos]
9. Objects / A. Existence of Objects / 2. Abstract Objects / c. Modern abstracta
We deal with abstract objects all the time: software, poems, mistakes, triangles.. [Boolos]
13. Knowledge Criteria / C. External Justification / 1. External Justification
Surely ALL truths are externally justified, by the facts? [Cross,A]
18. Thought / D. Concepts / 1. Concepts / a. Nature of concepts
Corresponding to every concept there is a class (some of them sets) [George/Velleman]
18. Thought / E. Abstraction / 7. Abstracta by Equivalence
An 'abstraction principle' says two things are identical if they are 'equivalent' in some respect [Boolos]